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Abstract

Statistical inference fundamentally concerns how to estimate unknown parame-
ters with observable data. Tweedie’s formula, an identity, solves this challenge
elegantly by establishing an exact relationship o2 x the derivative of the marginal
log-likelihood. This fundamental formula has profound implications and insights
for both theoretical statistics and machine learning.

1 Summary

Tweedie’s formula is a bridge between statistical inference and machine learning. It states that the
posterior expectation must equal the observation plus o2 x % log(m(z)), whee o2 is the variance
of the Gaussian noise. This formula effectively determines how much to trust individual observa-
tions when compared with the general population distribution. Its most far reaching implication has
been its recent rediscovery in denoising autoencoders and diffusion models, where it formed the
underlying backbone of the architecture, leading to the optimal Bayesian solution. This conclusion
has recently gained wide spread attention in various generative Al communities such as diffusion
modeling. As a result I have decided to write some of my thoughts and insights on this formula
to hopefully provide a more holistic understanding in a concise format. These recent connections
reveal novel insights on an old discovery regarding the fundamental principles of statistics and ma-
chine learning opening the opportunities for better models.

2 Tweedie’s Formula

Tweedie’s formula describes that under appropriate regularity conditions, and if we have a parameter
6 with some prior distribution g(6) and an observation X which follows the distribution f(z|6), then:

Ef| X =z]=x+ 02i log m(z)
dx
Here, X = 0+¢,e = N(0,0?) and, m(x) = [ f(z]0)g(0)d0 is the marginal density of the variable
X. This simple equation essentially states that the posterior expectation equals the observation plus
an adjustment term. This adjustment is determined by the derivative of the log marginal density.
Which fundamentally describes how much one needs to reduce the estimates based on the general
population distribution.

3 Theoretical Foundations

3.1 The Bayesian Perspective

From a classic Bayesian perspective, Tweedie’s formula provides a clean computational shortcut.
Rather than applying Bayes’ theorem to obtain the posterior distribution:



f(z]6)g(6)

p(0l) = =8

and then integrating to find the posterior mean:

E[0|X = 2] = /0p(9|:1:)d9

The shortcut holds exactly when the observation model is additive Gaussian with known variance
under o2. Tweedie’s formula gives us a direct path to the posterior expectation through differenti-
ation rather than integration cutting the computation down substantially. This is particularly useful
since integration is more expensive than differentiation and since it allows for the posterior distribu-
tion to be complex while m(z) is tractable.

3.2 Exponential Families

For exponential family distributions, Tweedie’s formula takes a particularly elegant form as demon-
strated below:

f(]0) = h(z) exp (6T (x) — A(0))

If the equation above is true, then we can also connect Tweedie’s formula to convex analysis:

E[0|X = 2] = Vyb* () = O ()

This gradient returns the natural (or MLE/MAP) parameter; it coincides with the posterior mean
only under a flat prior and large-sample limits. Here ¢ = T'(x) and b* is the convex conjugate of
the log-partition function A(f). This convex conjugate is defined as:

b (v) = sgp{HTib — A(0)}

This is a deep connection between Bayesian inference and convex optimization. The gradient of
the convex conjugate V,,b* (1) corresponds exactly to the parameter 6 that maximizes 67y — A(6),
which is precisely the posterior expectation we desire. This mathematical relationship demonstrates
how some divergences arise in Bayesian inferencing which also allows for geometrical interpreta-
tions of statistical estimation methods.

4 Deriving Statistical Estimators

To demonstrate the universality of Tweedie’s formula, lets derive an estimator in statistics.

Consider the example where we define the following variables X |0 ~ N(6,0%) and § ~ N(0,72)
and the marginal distribution to be X ~ N (0, 02+72). Here 7 defines the weight of prior knowledge
when compared to observed data, or uncertainty.

We apply Tweedie’s formula in the following form:

1. Calculate m(z) = (27 (0% + 72)) "2 exp(—22/(2(c? + 72)))
2. Find logm(x) = —1/2log(2n(0? + 72)) — 22/(2(0? + 7%))
3. Compute the derivative: d/dxlogm(z) = —z/(c? + 72)
4. Apply Tweedie’s formula: E[0|X = 2] = 2 — x/(0? + 72) = (7%/(0? + 7%))z
This recovers the James-Stein estimator, which shrinks the maximum likelihood estimate x toward

zero by a factor of 72/(0? + 72). This elegance demonstrates how Tweedie’s formula naturally
produces optimal shrinkage estimators.



5 Machine Learning

5.1 Denoising Autoencoders

Tweedie’s formula is fundamental to denoising autoencoders. When we add Gaussian noise € ~
N(0,02I) to some input data z, and train a neural network to reconstruct the original input, the
optimal reconstruction function becomes:

r*(x+e) = (z+e)+*Viogp(x +¢)

This is isomorphic to Tweedie’s formula, revealing that denoising autoencoders implicitly perform
Bayesian inference at their core. This illustrates why these types of architectures are so effective at
generating representations which estimate the gradient of log density, or score functions, of the data
distribution.

5.2 Score-Based Generative Models

Similarly, denoising autoencoders, generative modeling, and particularly diffusion models, leverage
score functions innately. In diffusion models in particular, Tweedie’s formula arises because diffu-
sion aims to reverse flow of information gathered through the process of Bayesian inference. For
example, here is the score function for diffusion models, defined as the gradient of the log probability
density:

Vep(2)
V., logp(a) = ~L)
’ p(x)
This gradient guides the generative process, allowing models to transform noise into structured data.
Tweedie’s formula is a fundamental property of denoising diffusion models because these process
flows are effectively reversing the process of Bayesian inference.

 Forward process: x; = /a;xo + /1 — aze where € ~ N(0,7) and oy decreases with
time

—a

* Reverse process: x;_1 = \/%(xt - \}@e(;(xt, t)) where € is a learned noise predictor

The optimal noise predictor eg(xy,t) seeks to estimate E[e|x;]. Through a slight change in the
variables, we can equate this to estimating V;, log p(x;). Which is, in other words, the precise the
score function.

We can then describe the reverse process in terms of probabilities:

pg(.’ﬂt,1 |5Et) = N(xtfl; [Lg(l't, t)? Ut2[)

where,
1-— (677

1
TVt VT = ageg(a b))

With sp, ~ V, 10g piog (s, ) resulting in a complete recovery of Tweedie’s adjustment o2sg(x¢,t)The
Bayesian inference is thus a fundamental part of diffusion models.

o (xy.t) (x4

5.3 Posterior Variance

Tweedie’s formula can also be extended to higher moments, demonstrating direction relationships
to information theory. The posterior variance is given by:

d2
Var(|X = z)o® + o' —

ar (0| x)o’ +o 122
This expression directly relates to Fisher information, denoted I(z), which quantifies how much
information an observation z carries about the unknown parameter 6. Specifically:

log(m(x))



Var(d| X = z) = I(z)~!

In this way, when we consider the second derivative, we can see that regions of descending steepness
in the log density will provide higher information certainty, while flatter regions will provide less
certainty. Think of Fisher information as the ”steepness” of the likelihood landscape, and that the
steeper the curve, the more precise the estimate. This works in high dimensional spaces while
providing confidence in accuracy while significantly reducing the computational costs.

5.4 Multivariate

Similarly, in the multivariate settings, Tweedie’s formula can be generalized to:

Ef|X =z] =2 + XV, logm(x)

where V is the gradient respective of x and X is the noise covariance.

Here the vectors and observations are handled in a manner which has various applications in high-
dimensional problem spaces. In each case, the multivariate formulation can provide a direct way to
reduce higher dimensions, which is determined by the gradient of the log marginal density.

6 Conclusion

Tweedie’s formula is a very fundamental equation in statistical inferencing that demonstrates re-
lationships in various other fields and applications. These include empirical Bayes, information
geometry, and modern machine learning where Tweedie’s formula offers both a theoretically sound
foundation and offers practical guidance on estimation problems. The local behavior of the marginal
distribution contains precisely the granular information necessary for optimal Bayesian estimation,
resulting in a a universality between Tweedie’s formula reducing statistical estimators and denoising
in modern machine learning.
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